

Autonomous Guidance & Control

New Millennium Theme Presentation

Sima S. Lisman
Automation and Control Section (345)

June 24, 1996

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Ca 91109

Autonomous Guidance & Control NMP Theme Presentation Agenda

- Acknowledgments
- Overall Vision
- Autonomous Guidance and Control (G&C) Vision
- Autonomy 5-Year Roadmap
- Key G&C Technologies
- Autonomous G&C Roadmap
- Technology Implementation for DS-1
- G&C Technology Comparison
- DS-1 Spacecraft Drawing and H/W Arrangement
- Representative DS-1 S/C Characteristics
- Overview of Autonomous G&C for DS-1
- Status of Autonomous G&C for DS-1
- DS-1 Spacecraft Flight Software Architecture
- DS-1 Autonomous G&C Architecture
- DS-1 Autonomous G&C State Diagram
- G&C Development Process
- Summary

Autonomous Guidance & Control NMP Theme Presentation Acknowledgments

- A. Aljabri (345)
- S. Bhaskaran (312)
- W. Breckenridge (345)
- J. Cameron (345)
- D. Chang (345)
- C. Chu (345)
- J. Cloots (Microcosm)
- K. Gostelow (345)
- F. Hadaegh (345)

- S. Joshi (345)
- B. Lurie (345)
- E. Mettler (345)
- G. Man (345)
- E. Riedel (312)
- G. Singh (345)
- S. Sirlin (345)
- B. Smith (395)
- L. Wood (312)

AUTONOMOUS GUIDANCE, NAVIGATION & CONTROL

AUTONOMOUS MANEUVER & NAVIGATION

AUTONOMOUS LANDING

AUTONOMOUS FEATURE RECOGNITION

AUTONOMOUS TARGET REFERENCED POINTING

Autonomous Guidance & Control NMP Theme Presentation Autonomous Guidance and Control Vision

- High-Level Commanding and Autonomous Execution
 - On-Board Precision Pointing
 - On-Board Turn Planning and Execution
 - On-Board Constraint Checking during Turn Planning and Execution
 - On-Board Maneuver Execution

- Autonomous Feature Recognition
 - On-Board Extended Body Centroid ID
 - On-Board Shape/Spin Characterization
 - On-Board Topography Mapping
 - On-Board Feature/Target Recognition

Mission Operations Savings

- Autonomous Landing
 - On-Board Drag/Atmosphere/Gravity Modeling
 - On-Board Hazard Avoidance Planning
 - On-Board Terminal Guidance and Descent
 - On-Board Precision Landing

Enabling Future Exploration

- Autonomous-Target Referenced Pointing
 - On-Board Image-Based Pointing
 - On-Board Feature/Target tracking
 - On-Board Precision Pointing

More Science

Sima S. Lisman- 5 6/24/96

Autonomy 5-Year Roadmap

Autonomous Guidance & Control NMP Theme Presentation Key G&C Technologies

AUTONOMOUS FUNCTIONS

- Estimation
 - Attitude Determination
 - Target Reference Tracking
 - Calibration of Actuators/ Sensors
 - Guidance Functions

- Control
 - Attitude Control
 - Precision Pointing & Tracking
 - Flexible Body Control
 - Disturbance Management

- On-Board Planning/Execution
 - G&C Activity Planning, Replanning, and Execution
 - G&C H/W Fault Diagnostics
 - Momentum Management
 - Control Loop Reconfiguration

ENABLING TECHNOLOGIES

- Autonomous ACS Architecture
 - Artificial Intelligence
 - Knowledge Representation
 - Fuzzy-Neural Nets
 - Supervisory Control
 - Expert Systems
 - Micro-ACS Instrumentation
- ACS Reconfigurable Control
 - Performance/Robustness Tuning
 - Intelligent Control
 - Adaptive/Robust Control
 - Fault Detection, Localization & Recovery

- On-Board Learning
 - Parameter Estimation
 - Nonlinear Estimation
 - Disturbance Identification
 - Multiple Hypothesis Testing
 - Control-Disturbance Interaction

- Advanced Tools and Processes
 - Rapid Prototyping Tools for End-End Real-Time Analysis and Simulation
 - Integrated Tools for Design and Testing of Highly Autonomous S/C
 - Common Flight Software
 - Highly Modular Plug & Play Tools and Application

Sima S. Lisman- 7 6/24/96

Autonomous Guidance & Control NMP Theme Presentation **Autonomous G&C Roadmap**

Technology

Ion Propulsion System (IPS) **Thrust Vector** Control

Precision Attitude Determination & Control

Target/Reference **Tracking**

On-Board Learning & Reconfigurable Control

Advanced Tools & Process **Improvements**

CY 1997

- -Analysis & Software including autonomous execution
- -Autonomous attitude pointing & stabilization w/flexible solar arrays and IPS
- -Integration with autonomous **Navigation software**
- -Onboard feature tracking S/W -Extended body center finding analysis & S/W
- -Onboard parameter estimation S/W
- -Performance robustness tuning S/W

- -Rapid prototyping tools for end-end real-time analysis & simulation Common, autonomous FSW architecture
- -Streamlined H/W in the loop testing

CY 2000

- -Precision attitude determination & control SW refined -Multi-platform attitude determination & control S/W -System ID of modal dynamics
- -Previous capabilities adapted to orbital operations

S/W for:

- -Active momentum management
- -Onboard disturbance ID
- -Shape/spin characterization
- -Drag/atmospheric modeling
- -Gravity mapping &Topography
- -Reconfigurable control S/W
- -Integrated tools for design and testing of highly autonomous S/C -Common Flight software elements

Vision

S/W for:

- -Multi-vehicle synchronization
- -Formation Flying
- -Laser Metrology
- -Full 6-DOF attitude control
- -Auto flyby sequencing S/W

S/W for:

- -Momentum management for active comets
- -Non linear estimation
- -Multiple hypothesis testing
- -Control disturbance interaction
- -Intelligent Control S/W
- -Highly modular, plug & play tools and applications

6/24/96 Sima S. Lisman- 8

Autonomous Guidance & Control NMP Theme Presentation Technology Implementation for DS-1

- DS-1 autonomous technologies are to be implemented during calendar years '96-97
- Significant strides made by incorporation of Autonomous Remote Agent and Optical Navigation
 - Autonomous Remote Agent provides high-level planning and execution
 - Autonomous Optical Navigation provides on-board S/C trajectory, ephemeris and desired delta-V information
- Autonomous G&C capabilities selected to support and enhance the above
- Emphasis is placed on High-Level Commanding and Autonomous Execution & Advanced Tools and Process Improvements within the G&C area

Autonomous Guidance & Control NMP Theme Presentation G&C Technology Comparison

CONVENTIONAL APPROACH

AUTONOMOUS APPROACH

Sima S. Lisman- 10 6/24/96

Autonomous Guidance & Control NMP Theme Presentation DS-1 Spacecraft Drawing

Autonomous Guidance & Control NMP Theme Presentation DS-1 H/W Arrangement

Autonomous Guidance & Control NMP Theme Presentation Representative DS-1 S/C Characteristics

- S/C launch mass of approx. 430 kg
- S/C moments of inertia (Deployed, Beginning of mission)
 - $I_{xx} = 910 \text{ kgm}^2$, $I_{yy} = 68 \text{ kgm}^2$, $I_{zz} = 908 \text{ kgm}^2$
- Solar panel system modes of (2% damping):
 - 0.28 Hz (1st symmetric bending O/P)
 - 0.71 Hz (1st anti-symmetric bending O/P)
 - 1.7 Hz (2nd symmetric bending O/P)
 - 2.1 Hz (1st symmetric bending I/P), ...
 - 5 Hz (1st symmetric torsion)
- Stellar Reference Unit overall accuracy of 675 μ rad (in X&Y), noise equivalent angle of 75 μ rad, and bias of 450 μ rad (all 3 σ), autonomous all-sky initialization and track
- Rate Sensor angle random walk of 9μrad/root second (3 σ), at 1 Hz update
- RCS thrust level of 0.5-0.25 N (blow down), minimum impulse bit range of 13-8 mNs, Cassini type misalignments, moment arms of 0.63-0.43 m
- Ion engine thrust of 20-90 mN, thrust stability of 2%, thrust vector misalignment of 17.5 mrad; long term alignment stability of 6.4 mrad (all 3 σ)
- Solar Panel harmonic drive actuators with overall accuracy of \pm 0.7 mrad (3 σ), step size of \pm 0.35 mrad
- Ion engine actuator : TBD

Autonomous Guidance & Control NMP Theme Presentation Overview of Autonomous G&C for DS-1

- The Autonomous G&C for DS-1 provides the following :
 - Attitude determination using star tracker and rate sensor
 - Turn planning: Turn time computation and geometric/dynamic constraint checking
 - Turn expansion: Low-level turn commands from high-level specifications
 - Turn execution with
 - Special accommodation of panel gimbal degree of freedom to maintain sun-point during turns
 - Constraint checking (geometric/dynamic) during turns
 - Inertial and body vector maintenance and update
 - Attitude control (inertial hold and turns) using hydrazine thrusters
 - Thrust vector control of the ion engine gimbal
 - Reaction Control System (RCS) delta-V execution
 - Pointing control of the solar panel gimbals
 - S/C behavior monitoring/diagnostic data for fault detection and isolation
 - Telemetry for the ground

Autonomous Guidance & Control NMP Theme Presentation Status of Autonomous G&C for DS-1

- Provided joint demonstration of autonomous G&C and Autonomous Navigation technologies for a prototype NM mission in September '95
- DS-1 Flight Team formed December '95
- Developed architecture for Autonomous G&C for DS-1
- Began rapid prototyping style code development in February '96
- Delivered first version of operational G&C code for DS-1 in March '96
- Plan to deliver full functionality G&C code by February '97 and ATLO ready code by July '97

Sima S. Lisman- 15 6/24/96

Autonomous Guidance & Control NMP Theme Presentation

DS-1 Spacecraft Flight Software Architecture

Autonomous Guidance & Control NMP Theme Presentation DS-1 Autonomous G&C Architecture

- ACS consists of 2 VxWorks processes. APE process does not require real-time priority
- All communications outside processes implemented via IPC messages, not shown here
- All ACS H/W Managers communicate with Bus Manager, via IPC

ACS H/W Manager

ACS S/W Module

VxWorks Process

Autonomous Guidance & Control NMP Theme Presentation DS-1 Autonomous G&C State Diagram

- Many G&C state changes are autonomous
- Those changes requiring coordination with higher level modules are commanded
- G&C can autonomously place the S/C in a safe state following faults

Sima S. Lisman- 18

Autonomous Guidance & Control NMP Theme Presentation G&C Software Development Process

- Rapid development of the G&C software, utilizing "C" language and modern real-time Operating System (VxWorks)
- Spiral development model, using multiple deliveries, each with increasing functionality
- Iterative design and testing using common testbed environment, running under multiple operating systems

Autonomous Guidance & Control NMP Theme Presentation Summary

- Well in process of providing autonomous G&C capabilities for NM DS-1
- Have a solid autonomous G&C technology roadmap with long term vision
- Proceeding with autonomous G&C technology development in preparation for future New Millennium missions
 - Orbital operations for deep space and Earth orbiting missions
 - Formation Flying
 - Smart small body landing
- Autonomous G&C area is bringing exciting and enabling capabilities to the New Millennium Program and future NASA missions